
 

Module spec template 2023-24 

 

Module specification 
 

When printed this becomes an uncontrolled document. Please access the Module 

Directory for the most up to date version by clicking on the following link: Module 

directory 

Module Code COM713 

Module Title Advanced Data Structure and Algorithm  

Level 7  

Credit value 20  

Faculty FACE 

HECoS Code 100956  

Cost Code GACP  

 

Programmes in which module to be offered  

Programme title Is the module core or option for this 
programme 

MSc Computer Science  Core  

MSc Computer Science with Advanced 
Practice  

Core  

MSc Software Engineering  Core  

MSc Software Engineering with Advanced 
Practice  

Core  

MSc Cyber Security  Core  

MSc Cyber Security with Advanced Practice  Core  

MSc Big Data and Data Analytics  Core  

MSc Big Data and Data Analytics with 
Advanced Practice  

Core  

Pre-requisites 
N/A 

Breakdown of module hours 

Learning and teaching hours 11 hrs  

Placement tutor support 0 hrs  

Supervised learning e.g. practical classes, workshops 10 hrs  

Project supervision (level 6 projects and dissertation 

modules only)  
0 hrs  

Total active learning and teaching hours 21 hrs  

Placement / work based learning  0 hrs  

Guided independent study 179 hrs  

Module duration (total hours) 200 hrs 

   

https://www.glyndwr.ac.uk/modules/
https://www.glyndwr.ac.uk/modules/


 

Module spec template 2023-24 

For office use only  

Initial approval date 20/07/2020 

With effect from date Sept 2024 

Date and details of 
revision 

Module Los and assessment update in the Computing 
Revalidation in July 2023 

Version number 2 

Module aims  
This module aims to give students a thorough grounding in the theories and application of 
key computer programming concepts such as algorithms, abstract data types, underlying 
data structures and their integration to produce efficient code. This allows students to 
develop the knowledge and skills to be able to analyse problems and then design, 
implement, and analyse, effective algorithmic solutions using a suitable programming 
language. Students will become familiar with the implications of algorithmic solutions in 
terms of their computational complexity and develop a working knowledge of optimal and 
approximate solutions to problems. These will be developed using procedural and object-
oriented programming with current methodologies to demonstrate proficiency in industry-
standard techniques.  

Module Learning Outcomes - at the end of this module, students will be able to: 

1 Analyse and interpret a range of problems and produce designs and models for 
algorithmic solutions.  

2 Critically evaluate problems and solutions in terms of their computational complexity.  

3 Articulate and validate the structure of algorithms using computational thinking 
terminology.  

4 Implement computational solutions that demonstrate proficiency in a range of data 
structures, algorithms and programming techniques.  

5 Perform the execution, testing, and debugging of intricate programs, translating the 
high-level design into tangible programming constructs.  

 

Assessment 

Indicative Assessment Tasks:  

This section outlines the type of assessment task the student will be expected to complete 

as part of the module. More details will be made available in the relevant academic year 

module handbook.  

The assignments will be designed to analyse and interpret a range of real-world problems and 
will require students to identify and interpret a range of problems and produce designs for 
algorithmic solutions. Students will submit different parts of the portfolio over the semester. 
The final part of the assessment will allow students to implement computational solutions and 
demonstrate their skill in writing, compiling, executing, testing and debugging their program. 



 

Module spec template 2023-24 

Overall, the assessments will provide students with the opportunity to apply their skills through 
solo and team-based programming challenges.  
 

The assessment will require students to compare AI generated code and analyse the 
differences from their implementation of the program with detailed explanation.   

Assessment 

number  

Learning 

Outcomes to 

be met 

Type of assessment Weighting (%) 

1  1,2,3,4,5  Portfolio  100%  

 

Derogations 
None  

Learning and Teaching Strategies 
In line with the Active Learning Framework, this module will be blended digitally with both a 
VLE and online community. Content will be available for students to access synchronously 
and asynchronously and may indicatively include first and third-party tutorials and videos, 
supporting files, online activities any additional content that supports their learning.  
As this module progresses, the strategies will change to best support a diverse learning 
environment. Initially, the module will start with a heavier reliance on engaging tutor-led 
lectures, demonstrations, and workshops to ensure that the students get the relevant threshold 
concepts. As the module continues experiential and peer learning strategies will be 
encouraged as the students’ progress with their portfolio work.  
Assessment will occur throughout the module to build student confidence and self-efficacy in 
relation to their proficiency in a range of data structures, algorithms and programming 
techniques.  

Indicative Syllabus Outline 

• Types of programming languages   

• Python programming language   

• Algorithms and complexity   

• Object-oriented programming   

• Stacks, queues and lists   

• Recursion  

• Searching and sorting   

• Tree and graph algorithms  

Indicative Bibliography: 
Please note the essential reads and other indicative reading are subject to annual review 
and update.  

Essential Reads   

F. Romano, B. Baka, & D. Phillips, Getting Started with Python. Packt Publishing, 2019.  

Other indicative reading 

P. Barry, P. Head, First Python: A Brain-Friendly Guide. O'Reilly Media, Inc. 2016.  
T.H. Cormen, Introduction to Algorithms. 3rd ed. Cambridge, Mass: MIT Press, 2009.  



 

Module spec template 2023-24 

M.T. Goodrich, R. Tamassia, & M.H. Goldwasser, Data structures and algorithms in Python. 
John Wiley & Sons Ltd. 2013.  
Wentworth, P., Elkner, J., Downey, A. B., & Meyers, C. How to Think Like a Computer 
Scientist. 3rd ed. 2020. Available online: 
https://buildmedia.readthedocs.org/media/pdf/howtothink/latest/howtothink.pdf  
B. Miller, &D. Ranum Problem Solving with Algorithms and Data Structures. Franklin, Beedle 
& Associates. 2020. Available online: 
https://runestone.academy/runestone/books/published/pythonds/index.html 


